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Abstract-An investigation is carried out between a spherical drop moving at Re i 1 and a continuous 
medium with an irreversible second-order chemical reaction inside a drop. 

Solutions of transfer equations are presented both for finite values of a chemical reaction rate constant 
with the limiting resistance of a dispersed phase and for a fast reaction with comparable phase resistances. 

Numerical results are reported for mean concentrations of reactants, extraction degree and flow_ in 
dependence on dimensionless time of phase contact and problem parameters. 
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NOMENCLATURE 

radial coordinate ; 
polar angle; 
time; 
radial and tangential velocity 
components of liquid; 
radius of drop; 

steady velocity of drop; 
ratio of viscosities of dispersed and 
continuous ph’ases; 
density; 
diffusivity; 
concentration; 

initial concentrations of surface 
extractant and chemisorbent inside 
a drop, respectively; 
extractant Row; 

dimensionless concentrations; 

chemical second-order reaction rate 

constant; 

K = kR2Cz0/D,, dimensionless constant of 
chemical reaction rate; 

m = C20/Clo; 

n = D2/D1; 
/3 = D1 $/&d, where K, is mean mass-transfer 

coefficient for continuous phase; 
drop diameter; 

II/ = c,o/Y,, distribution coefficient; 

r,, constant over height concentration of 
extractant in a continuous phase; 

Re = Udp,/p,, Reynolds number; 
7 = D1 t/R2, Fourier number (dimensionless time 

of phase contact); 
Pe = UdjD,, Peclet number; 
Pe’= Pe/4( 1 + p). 
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Subscripts 

1, 
2, 
4 
c, 

extractant; 
chemisorbent ; 

dispersed phase; 
continuous phase. 

INTRODUCTION 

TRANSFER of a substance from one phase to another 
involving chemical reactions is one of the widespread 
phenomena in chemical engineering. A study of this 

problem extended to disperse systems of moving 
spherical particles is of great practical interest. Such 
investigations are of importance for optimization of 
engineering processes and prediction of chemical 
column-type reactors, one of the contacting phases 
disperses in another. When solving these problems a 
knowledge of the interaction mechanism of an indi- 
vidual chemically-reacting particle with a flow is of 
particular importance. Some aspects of this problem 
will be considered for mass transfer accompanied with 
an irreversible second-order chemical reaction inside a 
moving spherical drop. 

Mass-transfer equations for a particle in an axi- 

symmetric flow involving an irreversible chemical 
reaction for each of the reactants may be written in 
the form 

Xi 
K+I$2+O;g= DiACi+qi (1) 

where q1 characterizes a contribution of a chemical 
reaction to a transfer process. 

Mass transfer between a moving particle and a con- 
tinuous flow, complicated with a chemical reaction, is 
usually considered for cases when a reaction proceeds 
in one of the phases limiting a transfer process. 
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Mass transfer with a chemical reaction in a medium 
around a single sphere was investigated in [I] for a 
first-order reaction by solving steady-state equation (1) 
at small and great Re values with the aid of analytical 
and finite-difference methods. In [2] unsteady-state 
equation (1) is solved for Pe >> 1, using the diffusional 
boundary layer method. For a second-order reaction 
a numerical solution of transfer equations is obtained 
in [3] for finite Pe and K values, and in [4] a fast 

reaction is considered for great Pr values in the dif- 
fusional boundary layer approximation. 

Mass transfer involving a chemical reactiorl inside 
a drop was investigated in [5]- [7] for different cases 
of a first-order reaction and in [8,9] for a second-order 
reaction at finite values of K and Pr. 

The present paper deals with mass transfer ac- 
companied by an irreversible second-order chemical 

reaction in a drop both for finite Pe and K at limiting 
resistance of a dispersed phase and for comparable 

phase resistances and large Pe in the presence of a 
fast reaction. 

MASS TRANSFER AT FINITE K AND Pe VALUES 

Consider the problem of mass transfer between a 
moving spherical drop and a continuous flow when a 

substance (an extractant) diffusing into a drop enters 
into a chemical second-order reaction with a reagent 
(chemisorbent) dissolved inside a drop. At the initial 
time instant concentrations of extractant and chemi- 
sorbent in a drop equal 0 and CIO, respectively. A 
chemisorbent flow through a drop surface is assumed 
absent during a mass-transfer process. For the limiting 
resistance of a dispersed phase such a problem may 

be reduced to a system of equations in terms of dimen- 
sionless values 

=AC,-KC,C2 (2) 

(3) 

with boundary and initial conditions 

Cl #xc; c2 #‘X (4) 
r-0 ,=* 

Cl = 1; !c? = 0 (5) 
,=I i;r r=, 

C-1 = 0: cz = 1. (6) 
i=0 r=ll 

Velocity components of a liquid inside a drop, V, 
and V,, in equations (2) and (3) are prescribed by the 
Hadamard-Rybczinski formulas [lo]. 

Equations (2)-(6) are solved using the alternating- 
direction finite-difference method. Numerical calcu- 
lations were carried out on the computer BSEM-4 for 
Pe = 20,40 and different values of WI, n, K parameters. 

An amount of substance diffused into a drop up to 
the time instant 7 is determined by the formula 

M = I/C,o~il(t)+I/CZO[1-~2(7)]. (7) 

where V is the drop volume and (?, and c2 are the 
mean concentrations of reactants determined by the 
formulas 

‘_I II 
C,(t) = : 

Ji‘ 
Cs(r, 0, z)r2 sin 0 dr d0 (s = 1.2). (8) 

0 0 

For a mean value of an extractant flow we have 

An amount of the absorbed extractant referred to Cl0 is 

‘4 = C, +m(l -CJ. (10) 

MASS TRANSFER ACCOMPANIED BY A FAST REACTION 

At finite values of a velocity constant K a reaction 

between an extractant and chemisorbent proceeds in 
the volume of the whole drop. As far as K grows, the 

reaction zone thickness contracts, and at sufficiently 
great K it becomes much less than a drop radius. At 
K + us the reaction zone thickness tends to zero and 
the zone itself may be approximately replaced by a 
front. In time the reaction front moves from a surface 
into a drop, thus separating the drop volume into two 
regions, one of them being with extractant, and another, 

with chemisorbent. Thus, the problem on mass trans- 
ferred to a moving spherical drop with a fast chemical 
reaction present reduces to solution of convective 
diffusion equations for extractant and chemisorbent 
coupled by conjugation conditions on a chemical 
reaction front. 

For sufficiently great Pe at Re < 1 the equations of 
convective diffusion for extractant and chemisorbent 

may be approximately described by the Kronig and 
Brink equations [ 1 l] 

where x = 4r2(1 -r2)sinz8 and q(x) and p(x) are de- 
fined in [ 1 l] as functions of ellpytical integrals. 

Equation (11) is obtained in [ 1 l] assuming constant 
concentrations along streamlines that hold at Pe -+ x. 

In this case the equation of convective diffusion reduces 
to that of unsteady-state molecular diffusion (11) in the 
direction normal to streamlines. At K + so the con- 
dition of constant concentrations of extractant and 
chemisorbent along streamlines is satisfied on surfaces 
being as close as possible to a reaction front, thus the 
latter coincides with streamlines as well. Concen- 
trations of reagents on the reaction front are equal to 
zero and magnitudes of their flows are the same and 
opposite in direction 

c, I i = c* = 0 (13) 
X=l .X=, 

C’C, X.2 _ = - II _ 
r:\- X=l (7.X x=, 

(14) 
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where I is the instantaneous position of the reaction 

front. Once valencies of extractant and chemisorbent 

are not equal, the concentration of chemisorbent 

should be multiplied by a stoichiometric coefficient. 
The boundary condition for extractant on a drop 

surface is of the same form as in the case of mass 
transfer without chemical reaction at comparable phase 
resistances and constant extractant concentration in a 
continuous phase [ 121 

Concentrations ofreactants inside a drop are limited. 
Initial conditions are determined by formulas (6). 

At small t a reaction occurs on a drop surface and 
boundary conditions (13) through (15) are not satisfied. 
In the present case concentration of extractant on a 

drop surface is equal to zero, and instead of boundary 
conditions (14), (15) we have 

dCz 3 

8.x x=o = X2&G’ 
(16) 

Concentration of chemisorbent on a drop surface 

decreases with time from 1 up to 0 that is achieved 
at or. Just from this time instant boundary conditions 
(13), (14) begin to hold. Thus, a general solution of the 

problem reduces to a successive solution of two prob- 
lems; firstly for 0 < T -$ TV equation (12) is solved pro- 
vided a chemisorbent flow on a drop surface is deter- 

mined according to (16), and then for 7 > tl a system 
of equations (11) through (15) is obtained at initial 
boundary conditions (6). Time rr is defined by solving 

the first problem when chemisorbent concentration on 
a drop surface becomes equal to zero. 

For chemisorbent mean concentration T, at T < ~~ 

use of the material balance equations 

Kcnd2Yo = _?.$g 

also yields an analytical solution 

17) 

18) 

Beginning from T = t2 corresponding to CZ = 0 

(position of a reaction front is defined by x = l), mass 
transfer is described by equation (11). Here the previous 
boundary conditions hold for C,, and the initial one 
is defined by Cr obtained solving the problem in the 
rangeofO<r<r,att=~,. 

A solution was obtained on the computer BESM-4 
by the finite-difference technique. During computation 
71r 1, volume-averaged concentrations of reactants and 
their derivatives were determined. Calculations were 
carried out for m = 1; 2; 10; n = 0.1; 05; 1; 5; 10; 
p = oGJO5; 0.005; 0.05. 

By C, and T, according to formula (9) a mean value 
of an extractant flow Q and its relation with the maxi- 
mum flow Q,,, = Knd2Y, 

Q/Qm = g [Cl +mU --Cdl, (19) 

and A/A, characterizing a ratio of extractant absorbed 

by a drop to maximum possible absorption with 

chemisorption is found 

A Cr+m(l-C2) 

A,= lfm 
(20) 

DISCUSSION 

Numerical results are presented graphically in Figs. 

l-8 for A, C1, C2, Q/Q,,, and A/A,,, depending on T and 
problem parameters. 

A 

FIG. 1. A vs T at Pe = 40, m = 5, n = 1 and different K values, 
1, K = 0; 2, K = 40; 3, K = 100; 4, K = 400: 5. K = 640 
(curve is built by data of [8]); 6, K = 1000; 7, K = 10000; 

8, K = 100000; 9, K, [curve is built by formula (23)]. 

A 

FIG. 2. A vs 5 for different Pe’, K and IH values. 1. K = 0, 
Pe’ = 40; 2, K = 0, Pe’ + J3; 3, K = 105. Pe’ = 40, 
m = n = 1; 4, K + cc, Pe’ -+ co, m = ,I = 1, fi = 0.0005: 
5, K = 10; Pe’ = 40, n = 1. WI = 3; 6, K = 105, Pe’ = 40; 

n = I, m = 5. 

Figure 1 presents A vs T at Pe = 40, m = 5, n = 1 
and different values of K. Curve 1 built at K = 0 (no 
chemical reaction) coincides with the appropriate cal- 
culations obtained by Johns and Beckman [13] when 
solving the equation of convective mass transfer inside 
a drop. A dotted curve is built for K = 640 by data 
of [8]. Curve 9 is built when K --t 640. In this case A is 
sought by the formula 

A = Ao(l +m) (21) 
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FIG. 3. A vs T at Pe = 40, M = 1. K = IO5 and different n 
values. 1, n = 1; 2, n = 2: 3. n = 10. 

FIG. 4. C1 and Cz YS T at m = I, II = 0.5 and different /I values. 
1. p = omo5; 2, p = 0905: 3, fl = 0.05. 

1n CT 103 

FIG. 5. C, and c;z vs T at [j = 0.05; )I = 5 and m = 1; 2; 10. 
-, T, : -----., s,. 1, m = I; 2, ,?I = 2; 3, VI = 10. 

where A, is the degree of saturation without chemical 
reaction. As is shown in [ 141, this relationship is valid 
for a fast chemical reaction situation provided dif- 
fusivities of reactants are equal to each other (n = 1). 
As follows from this plot, the values of K z 104- 10’ 
practically correspond to fast reaction conditions. 

Figure 2 depicts A vs r as well. Here solid lines are 

0 6 @ 2 4 6 ,o-3 z 4 6 ,0-z 2 4 6 ,0-l P 

T 

FIG. 6. Q/Q,,, vs T at /I = 00005, m = 2 and different n values. 
1, n = 0.1; 2, n = 0.5: 3, n = 1; 4, n = 5; 5, n = 10. 

F1c.7. Q/Qmvs7atB=~005.-,~.~.~.,m=l; l.rt=0.5; 
2, n = 5. ~- ----(VI = 2; 3, ,I = 0.5; 4, n = 5. ---, ,?I = 10: 

5, n = 0.5: 6, n = 5. 

FIG. 8. Q/Q,,, and A/A,,, vs 7 at b f. 0.05. --, Q/Q,,, ; ~- --, 
A/A, ; 1,2, n = 0.5; m = 10; 3, 4, n = 0.5; m = 1; 5, 6, PI = 5; 

m= 1. 

built for Pe = 40 and dotted ones, for PC + 0;. This 
graph illustrates an effect of m and Pe on a transfer 
process. Since curves 3, 5 and 6 are built for n = 1 and 
K = lo’, they may be approximately described by 
formula (21). In this case, the value of A, is determined 
by curve 1 at K = 0. Curve 4 may be predicted in the 
same way for which A, may be defined by curve 2. 
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Enhancement of mass-transfer rate with increasing 
parameter n is shown in Fig. 3 where n varies from 
1 to 10. At n = 10 A reaches its maximum with T z 0.04 
whereas for n = 1 an appropriate value of t approxi- 
mately equals 0.15. 

In the next figures the problem is analysed of mass 
transfer involving a fast chemical reaction. Here par- 
ameter fl is of importance. By its magnitude one may 
judge, which of phases controls a transfer process. As 
is shown in [IS], at p < O+jOl the resistance of a dis- 
persed phase is limiting and at fi > 0.1, that of a con- 
tinuous phase. Values of O-001 < p < 0.1 correspond 
to the case of comparable phase resistances. Note that 
for any p a growth of m and n contributes to enhance- 
ment of a velocity of chemisorbent transferred to a 
drop surface and, moreover, that of m increases 
chemical capacity that results in rr growth which 
determines an initial time interval where a reaction 
proceeds on a drop surface. T, considerably depends 
on p; at great 8, r1 is particularly great that is clear both 
from Q/Qm and AJA, dependences in Fig. 8 and from 
plots of mean concentrations in Figs. 4 and 5 where 
motion of reaction front is determined in terms of Cr 
inside a drop. During time interval rr, when reaction 
occurs on a drop surface, extractant is not transferred 
into a drop and concentration Cr = 0. 

In Table 1 A/( 1 + m) for /3 = OW5, m = n = 1 is com- 
pared to A0 values for mass transfer involving no 
chemical reaction at the same value of /L As is seen 
from Table 1, the predicted values are in good agree- 
ment with those given by formula (21). 

Table 1. Mean concentrations and extraction degree 
values at /i = 0.005, m = n = 1 

oQOo1 
0~0004 
0~0009 
0.0025 
0.0049 
00080 
0~0100 
0*02OQ 
0.0400 
0.0625 
O.looo 
0.2ooo 

0 0.970 
0.003 0,890 
0.019 0.812 
0.061 0,671 
0.111 0.534 
0158 0424 
@187 0364 
0295 O-175 
0.493 0.010 
0.724 0 
0.881 0 
0.984 0 

0.030 
a113 
0207 
0.390 
0.577 
0.734 
0823 
1.120 
1.483 
1.724 
1.881 
1.984 

0.015 
0.057 
0.104 0,103 
0.195 0.198 
0.289 0.288 
0,367 0.372 
0.412 0413 
0.560 0,562 
0.742 0.745 
0.862 0856 
0.945 0.948 
0.992 @998 

0.011 
0.057 

Evaluate, at which Pe, K and Revalues the solutions 
obtained are applicable. For Fe, the above solutions 
may be applied provided that the Kronig and Brinck 
equations [ll] are used for describing a transfer 
mechanism inside a drop. As is shown in [15), these 
equations may be used at Pe > 100. 

Estimate the value of K at which the thickness of 
reaction front may be assumed much less than a drop 
radius. Determine a characteristic time of a chemical 
reaction as that during which extractant concentration 
decreases /times at m = 1. Here at t = 0, Cr = C1 = Cl0 
is assumed over the whoIe drop volume. Then t, = 

(I- lY~C,o. A characteristic time of diffusion with 
liquid circulating in a drop is td = 0.022R2/D1. At 
t, c< td it is found that K >> 100. 

In the present paper the solutions to internal prob- 
lems of mass transfer complicated by a chemical 
reaction are obtained for Re < 1. However, in some 
cases these may also be employed for Re > 1. Thus, 
for instance, for sphericaldrops at !L < 2 [ 151, the liquid 
flow pattern slightly changes with Re growth, and the 
solutions for Re < 1 (and consequently, the solutions 
presented here for mass transfer with a chemical 
reaction) may be used at Re 2 100. 

1. 

2. 

3. 

4. 

5. 

6. 

I. 
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APPENDIX 

I, On Numericcrl Solution o/the Muss-Trutqftr Problem 

ilr Finite K CUU/ Pe Values 

To find a numerical solution of the problem, use is made 
of one of the variants of the alternating-direction method 
[17]. A difference scheme is written as 

where 3;/6r, d/60, 6’:6r, 6’/‘6/12 are the three-point difference 
derivatives. The first-order derivatives are taken with weight, 
for example 

In the difference scheme besides integer steps with respect 
to r and 0 

i= 1,2,....N; 

k= 1,2,...,/1; 

fractional ones are also used 

Weight values of i, and /L for the tirst derivatives with 
respect to r and 0. respectively, are chosen from the 
conditions : 

The limiting conditions at r = 0; 0 = 0, rt automatically 
hold due to a character of the scheme built [18]. Boundary 
conditions on a drop surface are directly approximated by: 

C&i = 1; C4A.J = ci:r,,,. (24) 

A system of equations (24)--(26) at each integer and 
fractional layers j, j+i represents a linear algebraic system 
with the number of unknown values corresponding to that 

of the equations. For its solution a ditference energy-type 
estimation is valid [ 191 

v/here M’ is the constant defined by initial and boundary 
conditions: Rh is the set of grid nodes in a rectangle 
0606n.O4r< I. 

Similar to [I91 it may be shown that at 11, TV, (A(),) + 0 
the solution for a grid reduced to the exact one in a norm 
defined by the L.H.S. of equation (27) and in this case the 
order of convergence equals (It’ + T). 

Estimation (27) gives a single-valued solution of the 
appropriate algebraic systems. Each system may be written 
in the form of a tridiagonal matrix and for its solution the 
elimination method is used. 

To solve equations (I I) and (12). a uniform difference 
scheme is built of the type 

where 11~ = zi - .Y,_ i, xi is the point ofsegment partition [0, i] 

provided ~4; 2 p and I(:+, > 0 
. 

provtded U! < 0 and uit 1 < 0 

I provided uj and ~1, I have different 
signs. 

Positive and negative values of U’ function at the point 

(xi, 5,) or (x~+~. rj) are designated through u+ and u-. 
This scheme is non-linear. For its solution the conven- 

tional method of successive approximations is used: by 
ui’ ’ the coefficients $(x~ + (hi+,/2)) are obtained for the 
layer 3; then, the linear scheme obtained is solved by the 
elimination method that results in I$‘). These values are 
used to build values of pJ”(z, + (hi+, :2)) and so forth unless 
tJck) values for two neighbouring iterations become suf- 
&iently close. It should be also noted that *the system of 
linear algebraic equations appearing at each iteration com- 
prises so many equations as the number of the unknown 
values. This is due to the fact that the scheme at the node 
x = 1 is written in accordance with the method elaborated 
in [18]. Calculations were performed by using an alter- 
nating grid with spacing refining to zero 

and variable time step being smaller at the initial section 
where great gradients of the desired values take place. 
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TRANSFERT DE MASSE EN PRESENCE DUNE TRANSFORMATION 
CHIMIQUE DANS UNE GOUTTE 

R&me-L’experience est effectuee sur une goutte sphirique en mouvement dam un milieu continu pour 

Re < 1 en presence dune reaction chimique irreversible du second ordre a l’interieur de la goutte. 
Des solutions des equations de transfert sont prbentees a la fois pour des valeurs finies de la constante 

de vitesse de la reaction chimique avec une resistance limitative de la phase dispersee et pour une reaction 
rapide avec des resistances de phase comparables. 

On presente les r&hats numeriques relatifs aux concentrations moyennes des reactants, aux degres 
d’extraction en fonction du temps de contact des phases et des paramttres du probltme. 

199 

STOFFUBERGANG BEI CHEMISCHER UMWANDLUNG EINER 
SUBSTANZ IN EINEM TROPFEN 

Zusammenfassung-Es wird eine irreversible chemische Reaktion zweiter Ordnung untersucht in einem 
kugeligen Tropfen, der sich mit Re i 1 bewegt. 

Losungen der Ubergangsgleichungen sind sowohl fur endliche Werte der chemischen Reaktion 
angegeben als such fur schnelle Reaktionen mit vergleichbarem Phasenwiderstand. 

Die numerischen Ergebnisse sind wiedergegeben fur mittlere Konzentrationen der Reaktanten fur den 
Extraktionsgrad und fur die Striimung in Abhangigkeit einer dimensionslosen Phasenkontaktzeit und 

anderer Parameter. 

MACCOI-IEPEHOC, COTIPOBO~~AEMbIii XMMHYECKMM I-IPEBPAIIIEHMEM 
BEIIIECTBA B KATIJIE 

huoTaqn%x - Mccnenyercn MaCCOO6MeH Mexny c+epIIYecKoii KanJIefi, ,mwIxymeikn npa Re < 1, 
W CIIJIOIIIHO~ CpeJIOfi B IIpIiCyTCTBIIII HeO6paTIIMOti XIiMkI’IeCKOfi peaKuHn BTOpOrO nOp5IJIKa, IIpOTe- 

Kammek BHyTpH KanJII% 

ki3JIOXCeHbI PeIIIeHIiR ypaBHeHIIli nepeIiOCa KaK JV’I5I KOHe’IHbIX 3HWieHHti KOHCTaHTbI CKOPOCTH 

XIIMKYeCKOti PeaKIIIiIi nnti JIuMIITIIpyIOmeM COnpOTkIBJIeHiIIi AIiCneprHpOBaHHOfI $a3bI, TaK II ,IIJIn 

6bIcTpO I-IpOTeKammeti PeaKuIIII rIpI COIi3MepnMblX @a3OBbIX COIIpOTIIBneHEWIX. 

nPeACTaBJIeHb1 Pe3yJIbTaTbI WiCJIeHHbIX paCqeTOB Anfl CpenHIIX KOHueHTpauIifi pearnpyKImnX 

BemeCTB, CTeneHA K3BJIe’IeHIIII II IIOTOKa B 3aBUCWMOCTU OT 6e3pa3MepHoro BpeMeHH KOHTaKTa Iha3 

a napaMeTpoB 3aAaw. 


