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Abstract—An investigation is carried out between a spherical drop moving at Re < 1 and a continuous
medium with an irreversible second-order chemical reaction inside a drop.
Solutions of transfer equations are presented both for finite values of a chemical reaction rate constant

with the limiting resistance of a dispersed phase and for
Numerical results are reported for mean concentra

a fast reaction with comparable phase resistances.
tions of reactants, extraction degree and flow in

dependence on dimensionless time of phase contact and problem parameters.

NOMENCLATURE

r, radial coordinate;

a, polar angle;

t, time;

V., Vo, radial and tangential velocity

c, components of liquid;

R, radius of drop;

U, steady velocity of drop;

K= Uyfte, ratio of viscosities of dispersed and
continuous phases;

o, density;

D, diffusivity;

c, concentration;

Cig,Cao, initial concentrations of surface
extractant and chemisorbent inside
a drop, respectively;

0, extractant flow;

Cy = c1/Cro, dimensionless concentrations;

C;y = ¢2/Cao,

K, chemical second-order reaction rate

constant;
K = kR2C,0/D,, dimensionless constant of
chemical reaction rate;

m = Cz0/Co;
n=Dy/Dy;
B = DYy/K. d, where K, is mean mass-transfer

coefficient for continuous phase;
drop diameter;

¥ = C,0/Y,, distribution coefficient;

Yo, constant over height concentration of
extractant in a continuous phase;

Re = Udp_/u., Reynolds number;

t = D,t/R?  Fourier number (dimensionless time
of phase contact);

Pe = Ud/D,, Peclet number;

Pe’'= Pe/4(1 + p).
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Subscripts
1, extractant;
2, chemisorbent;;
d, dispersed phase;
¢, continuous phase.

INTRODUCTION

TRANSFER of a substance from one phase to another
involving chemical reactions is one of the widespread
phenomena in chemical engineering. A study of this
problem extended to disperse systems of moving
spherical particles is of great practical interest. Such
investigations are of importance for optimization of
engineering processes and prediction of chemical
column-type reactors, one of the contacting phases
disperses in another. When solving these problems a
knowledge of the interaction mechanism of an indi-
vidual chemically-reacting particle with a flow is of
particular importance. Some aspects of this problem
will be considered for mass transfer accompanied with
an irreversible second-order chemical reaction inside a
moving spherical drop.

Mass-transfer equations for a particle in an axi-
symmetric flow involving an irreversible chemical
reaction for each of the reactants may be written in
the form

aCi+K%+GEaC‘

ot or r 00
where g, characterizes a contribution of a chemical
reaction to a transfer process.

Mass transfer between a moving particle and a con-
tinuous flow, complicated with a chemical reaction, is
usually considered for cases when a reaction proceeds
in one of the phases limiting a transfer process.

= D;AC;+q; (1)
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Mass transfer with a chemical reaction in a medium
around a single sphere was investigated in [1] for a
first-order reaction by solving steady-state equation (1)
at small and great Re values with the aid of analytical
and finite-difference methods. In [2] unsteady-state
equation (1) is solved for Pe > 1, using the diffusional
boundary layer method. For a second-order reaction
a numerical solution of transfer equations is obtained
in [3] for finite Pe and K values, and in [4] a fast
reaction is considered for great Pe values in the dif-
fusional boundary layer approximation.

Mass transfer involving a chemical reactiod inside
a drop was investigated in [5]-[7] for different cases
of a first-order reaction and in [8, 9] for a second-order
reaction at finite values of K and Pe.

The present paper deals with mass transfer ac-
companied by an irreversible second-order chemical
reaction in a drop both for finite Pe and K at limiting
resistance of a dispersed phase and for comparable
phase resistances and large Pe in the presence of a
fast reaction.

MASS TRANSFER AT FINITE K AND Pe VALUES

Consider the problem of mass transfer between a
moving spherical drop and a continuous flow when a
substance (an extractant) diffusing into a drop enters
into a chemical second-order reaction with a reagent
(chemisorbent) dissolved inside a drop. At the initial
time instant concentrations of extractant and chemi-
sorbent in a drop equal 0 and C,,. respectively. A
chemisorbent flow through a drop surface is assumed
absent during a mass-transfer process. For the limiting
resistance of a dispersed phase such a problem may
be reduced to a system of equations in terms of dimen-
sionless values

aoC - oC V,oC,
e (S 2 LA —KC, Gy ()
ot or r &0
oC 0C V, eC K
2P (122 = A - € G ()
leks or r 00 m
with boundary and initial conditions
Cy # o, ¢, # o 4)
r=0 r=0
oC
ol =10 22 =0 )
r=1 Cr |r=1
c,l =0 G| =1 6)
=0 =0

Velocity components of a liquid inside a drop, V;
and V,, in equations (2) and (3) are prescribed by the
Hadamard-Rybczinski formulas [10].

Equations (2)-(6) are solved using the alternating-
direction finite-difference method. Numerical calcu-
lations were carried out on the computer BSEM-4 for
Pe = 20, 40 and different values of m, n, K parameters.

An amount of substance diffused into a drop up to
the time instant t is determined by the formula

M =VC,Ci(t)+ VCyo[l—Cs(1)], (7)
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where V is the drop volume and C; and C, are the
mean concentrations of reactants determined by the
formulas

"1 n
Qm:gJ J Csl(r,0, 1) sinfdrd0 (s =1,2). (8)

0 Jo

For a mean value of an extractant flow we have
nd3 _
chlo'g['[cx+m(1'C2)]- (9)

Anamount of the absorbed extractant referred to C 4 is
A=C,+m(1-C,). (10)

MASS TRANSFER ACCOMPANIED BY A FAST REACTION

At finite values of a velocity constant K a reaction
between an extractant and chemisorbent proceeds in
the volume of the whole drop. As far as K grows, the
reaction zone thickness contracts, and at sufficiently
great K it becomes much less than a drop radius. At
K — oo the reaction zone thickness tends to zero and
the zone itself may be approximately replaced by a
front. In time the reaction front moves from a surface
into a drop, thus separating the drop volume into two
regions, one of them being with extractant, and another,
with chemisorbent. Thus, the problem on mass trans-
ferred to a moving spherical drop with a fast chemical
reaction present reduces to solution of convective
diffusion equations for extractant and chemisorbent
coupled by conjugation conditions on a chemical
reaction front.

For sufficiently great Pe at Re < 1 the equations of
convective diffusion for extractant and chemisorbent
may be approximately described by the Kronig and
Brink equations [11]

I 0Cy g(x) 0C,

o A 11
ox [p(x) 0x J 16 ¢ (an
0 oC 0C
O p 22 |2 49 0C2 (12)
ox 0x l6n dr

where x = 4r3(1 —r?)sin®@ and g(x} and p(x) are de-
fined in [11] as functions of ellpytical integrals.

Equation (11) is obtained in [11] assuming constant
concentrations along streamlines that hold at Pe — .
In this case the equation of convective diffusion reduces
to that of unsteady-state molecular diffusion (11) in the
direction normal to streamlines. At K — oo the con-
dition of constant concentrations of extractant and
chemisorbent along streamlines is satisfied on surfaces
being as close as possible to a reaction front, thus the
latter coincides with streamlines as well. Concen-
trations of reagents on the reaction front are equal to
zero and magnitudes of their flows are the same and
opposite in direction

Cy =C, =0 (13)
x=1 x=1

(C 0C

(;l = —n%—z (14)

CX |x=1 CX jx=t
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where [ is the instantaneous position of the reaction
front. Once valencies of extractant and chemisorbent
are not equal, the concentration of chemisorbent
should be multiplied by a stoichiometric coefficient.

The boundary condition for extractant on a drop
surface is of the same form as in the case of mass
transfer without chemical reaction at comparable phase
resistances and constant extractant concentration in a
continuous phase [12]

-Q
x=0

oC 3
1 :—@1
x=0 32ﬂ

ox

Concentrations of reactants inside a drop are limited.
Initial conditions are determined by formulas (6).

At small 7 a reaction occurs on a drop surface and
boundary conditions (13) through (15) are not satisfied.
In the present case concentration of extractant on a
drop surface is equal to zero, and instead of boundary
conditions (14), (15) we have

éc,, 3
0x =0 32Bmn’

(15)

(16)

Concentration of chemisorbent on a drop surface
decreases with time from 1 up to O that is achieved
at 7. Just from this time instant boundary conditions
(13), (14) begin to hold. Thus, a general solution of the
problem reduces to a successive solution of two prob-
lems; firstly for 0 < 7 < 1, equation (12) is solved pro-
vided a chemisorbent flow on a drop surface is deter-
mined according to (16), and then for 1 > 7, a system
of equations (11) through (15) is obtained at initial
boundary conditions (6). Time t, is defined by solving
the first problem when chemisorbent concentration on
a drop surface becomes equal to zero.

For chemisorbent mean concentration C, at 7 < 1,
use of the material balance equations

(17

also yields an analytical solution
Cy=1-3 ﬁim .

Beginning from 7 =1, corresponding to C, =0
(position of a reaction front is defined by x = 1), mass
transfer is described by equation (11). Here the previous
boundary conditions hold for C,, and the initial one
is defined by C; obtained solving the problem in the
range of 0 <t <1, att = 1,.

A solution was obtained on the computer BESM-4
by the finite-difference technique. During computation
11, I, volume-averaged concentrations of reactants and
their derivatives were determined. Calculations were
carried out for m=1; 2; 10; n=01; 0:5; 1; 5; 10;
B = 0-0005; 0-005; 0-05.

By C, and C, according to formula (9) a mean value
of an extractant flow Q and its relation with the maxi-
mum flow Q,, = K.nd?Y,

(18)

28 _
Q/szgg[cl +m(1—=C,)], (19)

and A/A,, characterizing a ratio of extractant absorbed
by a drop to maximum possible absorption with
chemisorption is found

A _ Cl +m(l—C2)

—— = e 20
Ap 1+m (20)

DISCUSSION

Numerical results are presented graphically in Figs.
1-8for A,C,, C,, Q/Q,, and A/A,, depending on 7 and
problem parameters.

[¢] 003 0-06 0-09 o2 o5

FiG. 1. Avstat Pe=40,m = 5, n=1and different K values.

1, K=0;2 K=40; 3, K=100; 4, K =400; 5, K = 640

(curve is built by data of [8]); 6, K = 1000; 7, K = 10000;
8, K = 100000; 9, K, [curve is built by formula (23)].

FiG.2. A vs 1 for different Pe!, K and m values. 1, K =0,

Pe' =40; 2, K=0, Pe' - x0; 3, K=10° Pe' =40,

m=n=1; 4, K-oc, Pe' »0, m=n=1, f=00005;

5, K=10; Pe! =40, n=1. m=3; 6, K = 10°, Pe! = 40;
n=1,m=>5.

Figure 1 presents A vs T at Pe =40, m=5,n=1
and different values of K. Curve 1 built at K =0 (no
chemical reaction) coincides with the appropriate cal-
culations obtained by Johns and Beckman [13] when
solving the equation of convective mass transfer inside
a drop. A dotted curve is built for K = 640 by data
of [8]. Curve 9 is built when K — 640. In this case A4 is
sought by the formula

A= Ao(l+m) (21
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Fi1G.3. Avst at Pe=40, m=1, K = 10° and different »n
values. Ln=1;2,n=2;3, n=10.
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F1G6.4. Cyand C,vstatm = 1, n= 05 and different 8 values.
1. B = 0-000S; 2, g = 0-005: 3, 8 = 0-05.

o2

FiG.5. C;and Cy;vstat f =005, n=5and m=1; 2; 10.

— Gy, Ci.lm=1;2m=2;3, m=10.

where A, is the degree of saturation without chemical
reaction. As is shown in [ 14], this relationship is valid
for a fast chemical reaction situation provided dif-
fusivities of reactants are equal to each other (n = 1).
As follows from this plot, the values of K ~ 10*—10°
practically correspond to fast reaction conditions.
Figure 2 depicts 4 vs t as well. Here solid lines are

B. 1. BROUNSHTEIN, G. A. FISHBEIN and V. YA. RIVKIND

08

06

04

02

0 6 042 4 6 p32 4 6,022 46 o) 7

T
F1G. 6. Q/Q, vstatf = 0-0005, m = 2 and different n values.
1,n=01;2,n=05:3n=1;4n=35;5n=10.
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Fi1G. 8. Q/Q, and A/A,, vs t at § = 0-05, ——-, Q/Qp,; — -,
A/An; 1,2,n=05m=10.3,4,n=05m=1;56n=35;

m=1,

built for Pe = 40 and dotted ones, for Pe — co. This
graph illustrates an effect of m and Pe on a transfer
process. Since curves 3, 5 and 6 are built for n = 1 and
K =10°% they may be approximately described by
formula (21). In this case, the value of A4, is determined
by curve | at K = 0. Curve 4 may be predicted in the
same way for which A, may be defined by curve 2.
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Enhancement of mass-transfer rate with increasing
parameter n is shown in Fig. 3 where n varies from
1 to 10. At n = 10 A reaches its maximum with t ~ 0-04
whereas for n = 1 an appropriate value of t approxi-
mately equals 0-15.

In the next figures the problem is analysed of mass
transfer involving a fast chemical reaction. Here par-
ameter § is of importance. By its magnitude one may
judge, which of phases controls a transfer process. As
is shown in [15], at # < 0-001 the resistance of a dis-
persed phase is limiting and at 8 > 0-1, that of a con-
tinuous phase. Values of 0-:001 < § < 01 correspond
to the case of comparable phase resistances. Note that
for any f a growth of m and » contributes to enhance-
ment of a velocity of chemisorbent transferred to a
drop surface and, moreover, that of m increases
chemical capacity that results in 7, growth which
determines an initial time interval where a reaction
proceeds on a drop surface. 7, considerably depends
on f; at great B, 7, is particularly great that is clear both
from Q/Q,, and A/A,, dependences in Fig. 8 and from
plots of mean concentrations in Figs. 4 and 5 where
motion of reaction front is determined in terms of
inside a drop. During time interval t,, when reaction
occurs on a drop surface, extractant is not transferred
into a drop and concentration C; = 0.

InTable 1 4/(1+m)for f = 0005, m = n=11is com-
pared to Aoy values for mass transfer involving no
chemical reaction at the same value of f. As is seen
from Table 1, the predicted values are in good agree-
ment with those given by formula (21).

Table 1. Mean concentrations and extraction degree
values at § = 0005, m =n=1

~ ~ 4

T C, C, A=Ci+m1-Cy) —— A
I+m
00001 O 0970 0030 0015 0011
00004 0003 0890 0113 Q057 0057
00009 0019 0812 0207 0104 0103
00025 0061 0671 0-390 0195 0198
00049 0111 0534 0577 0289 0288
00080 Q158 0424 734 0367 0372
00100 0187 0364 0823 0412 0413
00200 0295 0175 1120 0560 0562
00400 0493 0010 1-483 0742 0745
00625 0724 0 1724 0862 (-856
01000 0881 0O 1-881 0945 0948
02000 0984 O 1-984 0992 0998

Evaluate, at which Pe, K and Re values the solutions
obtained are applicable. For Pe, the above solutions
may be applied provided that the Kronig and Brinck
equations [11] are used for describing a transfer
mechanism inside a drop. As is shown in [15], these
equations may be used at Pe > 100.

Estimate the value of K at which the thickness of
reaction front may be assumed much less than a drop
radius. Determine a characteristic time of a chemical
reaction as that during which extractant concentration
decreases [times at m= 1. Hereatt=0,C; =C, = Cyy
is assumed over the whole drop volume. Then t, =

(I-1)/KC,o. A characteristic time of diffusion with
liquid circulating in a drop is t4 = 0-022R?/D,. At
t, « tg it is found that K > 100.

In the present paper the solutions to internal prob-
lems of mass transfer complicated by a chemical
reaction are obtained for Re < 1, However, in some
cases these may also be employed for Re > 1. Thus,
for instance, for spherical drops at u < 2[15], the liquid
flow pattern slightly changes with Re growth, and the
solutions for Re < 1 {and consequently, the solutions
presented here for mass transfer with a chemical
reaction) may be used at Re ~ 100.
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APPENDIX
1. On Numerical Solution of the Mass-Transfer Problem
At Finite K and Pe Values
To find a numerical solution of the problem, use is made
of one of the variants of the alternating-direction method
[17]. A difference scheme is written as

Cll - RIS i 2 C!".!
G py (V,f,k»al ~>~-»)‘
T r; or
FCIN
=05 Sy C{,kCﬁ‘,‘ (s=12) (22)
Cuk _Cuk Pe'Vyix cotan (}k OCUJ‘I
S + J— vA,,,,*xl -
7o r; r2 80
_AOGE K e =12 @3)
"iz 502 azz -1k L2 =L
I s=1 L. s=1
= n,os =2 %= Im, s=2

where §/r, 3/08, 8 /or, 6%/30* are the three-point difference
derivatives. The first-order derivatives are taken with weight,
for example

oC, R C; k+1 ( ~Cioyx
— = 4 +(1 —A) ThkTITLA
or h,- h‘ 1

O0<agl.

In the difference scheme besides integer steps with respect
torand 0

<21—1 n> n(2k—1)
Fp = sin| - O = ———;
IN—-12 M

fractional ones are also used

2i w T
s A

Weight values of 4 and g for the first derivatives with
respect to r and 0, respectively, are chosen from the

conditions:
{0. Vaix €0
u=

{0, V<0
} =
I V>0 L Vyw>0.

The limiting conditions at » = 0; 6 = 0, n automatically
hold due to a character of the scheme built [18]. Boundary
conditions on a drop surface are directly approximated by:

le?\;l\ = Cﬂ/‘i = Cﬁ.;él,b (24)

A system of equduons (24)-(26) at each integer and
fractional layers j, j+% represents a linear algebraic system
with the number of unknown values corresponding to that

of the equations. For its solution a difference energy-type
estimation is valid [ 19]

Sup 2. A0 sin* O(CT) + 70 Z h{A6))

£y,
(l\+ (A+1~ s (C (.1 1)
L) PRI ot Tl o, < (25
< T )r T A, ) SO se 2

where M! is the constant defined by initial and boundary
conditions; Q, is the set of grid nodes in a rectangle
0<0<n0<r< 1.

Similar to [19] it may be shown that at h, 14, (A0;) -0
the solution for a grid reduced to the exact one in a norm
defined by the L.H.S. of equation (27} and in this case the
order of convergence equals {(h? +1).

Estimation (27) gives a single-valued solution of the
appropriate algebraic systems. Each system may be written
in the form of a tridiagonal matrix and for its solution the
elimination method is used.

X

2. On Numerical Solution of the Problem of Mass Transfer
with a Fast Reaction
To solve equations (11) and (12), a uniform difference
scheme is built of the type

-/ . h.»‘l\) ul, | —uf ( i u‘~u{ =
x4 )= = X + B
P}( AT Pi 1 hi

x)ul—u’ !

16 7

where Ity = x;— x;_;, x;is the point of segment partition [0,1]
e
=
~(wz .
npl x; +£il>
e 2

/

0<x<l

=~ ~
I<ygt

provided u{ =

( + hi+l>

X+ —

p ‘ 3

provided u{ <0 and uf,, <0
hi+1) [ +]u |

n ’(, + " e T

”( 2 e+

provnded uf and uf, | have different
signs.

pand uf,, =0

.

hiyy
o)

Positive and negative values of u/ function at the point
{x;, T;) O (x;41.7;) are designated through u™ and u™~.
This scheme is non-linear. For its solution the conven-
tional method of successive approximations is used: by
uf*' the coeflicients p(x; + (h;+/2)) are obtained for the
layer 7;; then, the linear scheme obtained is solved by the
elimination method that results in u/"". These values are
used to build values of p{"(x; + (h;.,/2)) and so forth unless
uf* values for two neighbouring iterations become suf-
ficiently close. It should be also noted that the system of
linear algebraic equations appearing at each iteration com-
prises so many equations as the number of the unknown
values. This is due to the fact that the scheme at the node
x =1 is written in accordance with the method elaborated
in [18]. Calculations were performed by using an alter-
nating grid with spacing refining to zero

_ -
X; = l—cos| — )
[ (2n+1/ i

and variable time step being smaller at the initial section
where great gradients of the desired values take place.
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TRANSFERT DE MASSE EN PRESENCE D’'UNE TRANSFORMATION
CHIMIQUE DANS UNE GOUTTE

Reésume—L’expérience est effectuée sur une goutte sphérique en mouvement dans un milieu continu pour
Re < 1 en présence d’'une réaction chimique irréversible du second ordre a l'intérieur de la goutte.
Des solutions des équations de transfert sont présentées a la fois pour des valeurs finies de la constante
de vitesse de la réaction chimique avec une résistance limitative de la phase dispersée et pour une réaction
rapide avec des résistances de phase comparables.
On présente les résultats numériques relatifs aux concentrations moyennes des réactants, aux degrés
d’extraction en fonction du temps de contact des phases et des paramétres du probléme.

STOFFUBERGANG BEI CHEMISCHER UMWANDLUNG EINER
SUBSTANZ IN EINEM TROPFEN

Zusammenfassung—Es wird eine irreversible chemische Reaktion zweiter Ordnung untersucht in einem
kugeligen Tropfen, der sich mit Re < 1 bewegt.
Losungen der Ubergangsgleichungen sind sowohl fiir endliche Werte der chemischen Reaktion
angegeben als auch fiir schnelle Reaktionen mit vergleichbarem Phasenwiderstand.
Die numerischen Ergebnisse sind wiedergegeben fiir mittlere Konzentrationen der Reaktanten fiir den
Extraktionsgrad und fiir die Stromung in Abhéngigkeit einer dimensionslosen Phasenkontaktzeit und
anderer Parameter.

MACCOIEPEHOC, COITPOBOXJIAEMbIA XUMWYECKUM ITPEBPAIEHUEM
BEIIECTBA B KAIUIE

Annorauns — Uccnenyerca maccooOmen Mexay cdepuyeckoit kariei, nBvxkyiueiica npu Re < 1,
M CIUIOUIHOM Cpelioit B IPUCYTCTBHH HeoOpaTHMON XMMH4ECKON peakusu BTOPOTO MOpsjIKa, npoTe-
KaloLIei BHYTPH KaIlIK.

W3510KeHbl pelleHHs YpaBHEHMH nepeHoca KaK Uil KOHEYHBIX 3HAYEHMH KOHCTAHTHI CKOPOCTH
XMUMHMYECKOH PEAKUMH NpH JIHMHTHPYIOLIEM CONPOTHBIICHHH AMCIIEPIMPOBAHHOM ¢a3bl, Tak M s
OBICTPO NpOTEKAIOLEH peaKLHK IPH COM3MEPHMBIX (Pa30BBIX COMPOTHRIICHUSAX.

IIpeacraBnenbl pe3yjbTaThl YHCIEHHBIX Pacye€TOB A CPEOHHX KOHHIEHTpaLUWii pearupyrolinx
BELIECTB, CTEMEHH M3BACYEHHS U IOTOKA B 3aBUCHMOCTH OT 0€3pa3MEPHOro BpeMEHU KOHTaKTa ¢as

M [1apaMETpPOB 3a1ayy.
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